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On the evaluation of derivatives of Gaussian integrals* 
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Summary. We show that by a suitable change of variables, the derivatives of 
molecular integrals over Gaussian-type functions required for analytic energy 
derivatives can be evaluated with significandy less computational effort than 
current formulations. The reduction in effort increases with the order of differen- 
tiation. 
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1. Introduction 

Analytic energy derivative methods have revolutionized the application of  com- 
putational quantum chemistry to problems of chemical interest [ 1]. The location 
and characterization of  stationary points on polyatomic molecular potential 
energy surfaces can be accomplished so much more efficiently using analytic 
derivatives than with techniques based on computing energies alone that the 
development and extension of analytic derivative methods has been one of  the 
most active fields of methodological research in quantum chemistry in recent 
years. Given the gradient and Hessian of the energy with respect to the nuclear 
coordinates, a variety of  strategies have been developed that are guaranteed to 
converge to minima on potential surfaces and that can efficiently locate other 
stationary points, particularly transition states. These strategies can also be used 
to "walk" on surfaces from one minimum to another, thereby defining a reaction 
coordinate, and among the most elegant and conceptually illuminating studies of 
this sort are the investigations of Ruedenberg and co-workers on rearrangement 
reactions of small hydrocarbon species (see Refs. 2 -5  and references therein). It 
is thus a great pleasure to dedicate this contribution to Professor Ruedenberg on 
the occasion of his 70th birthday. 
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Of course, in order to perform such walks and optimizations it is imperative 
to evaluate the energy derivatives efficiently at the computational level of  interest 
(Har t r ee -Fock  or some correlated treatment). As noted above, much work has 
been performed in this area, and several reviews are available [1, 6, 7]. We shall 
concentrate here on a topic that ultimately affects the computational effort 
necessary to evaluate energy derivatives for any ab initio method that relies on a 
basis set expansion of Gaussian one-electron functions. 

Wave functions for polyatomic molecules are invariably expanded in a basis 
set that is centred on the various nuclei, and so in a calculation of the energy 
derivative of  nth order with respect to the nuclear coordinates, up to nth-order 
derivatives of the one- and two-electron integrals are required. These derivative 
integrals can involve differentiation of the operators as well as differentiation of  
the basis functions, but the greatest computational problems arise from the 
differentiation of the basis functions. Like the evaluation of integrals over 
Gaussians [8, 9], the calculation of integrals over differentiated Gaussians has 
been the subject of many investigations and numerous efficient computational 
schemes have been devised. In this work we show how the efficiency of derivative 
integral evaluation can be improved by some simple manipulations of  variables. 
We shall briefly review the McMurchie-Davidson scheme [8] for computing 
Gaussian integrals and derivative integrals, and then show how a change of  
differentiation variables simplifies the formulas. 

2. Derivative integral formulas 

We shall expand the Gaussian charge distributions that appear in the integrals 
in Hermite functions, as described by McMurchie and Davidson [8] (see 
also Saunders [9]). L e t  us represent an unnormalized Cartesian Gaussian 
function centred at A by: 

Gi jk ( r  , a, A) = XiAJAZkA exp(--ar2a), (1) 

where xa = x - A x ,  etc. We can consider one Cartesian direction, say x, repre- 
sented as 

i exp( - ax 2A). G i ( x  , a,  Ax) = x a 

The overlap distribution of two such functions is expanded as: 

I2u(x, a, b, Ax, B~) - G~(x, a, Ax)Gj(x, b, Bx) 
i + j  

= ~ E~/(a, b, Ax, Bx)A,(x,p,  Px), 
t --O 

where the Hermite function A,(x, p, Ix)  is defined by: 

At(x, P, Px) = (O /~px)t exp( - p x  2) 

with 

and 

f = _ a / + b ~  
P P 

(2) 

(3) 

(4) 

(5) 

p =a  +b. (6) 



On the evaluation of derivatives of Gaussian integrals 179 

The expansion coefficients E~J(a, b, A~, Bx) are obtained from: 

.. b .. 
E~+ ~,s =__1 E7 1 - - RzE', g + (t + 1)E~J+ ~, 

2p p 

where 

(7) 

Rx =Ax --Bx (8) 

and 

exp(   x) 
Henceforth we shall not always list the arguments of the expansion coefficients or 
Hermite functions, but we wish to emphasize here that the expansion coefficients 
depend on a, b, and Rx only, while the Hermite functions are independent of  Rx : 

i + j  

Qi+(x, a, b, Ax, Bx) = ~, E~J(a, b, Rx)At(x,p, P~). (10) 
t = 0  

In terms of the Hermite functions and expansion coefficients we can express 
a two-electron integral: 

f f  x ]ySz7  exp( - arZ)x~y~z~ br 2) e x p (  

-1 r k. m" exp(_cr2c)x~y~z~£ e x p ( - d r ~ ) d q  dr2 (11) X r12  X c Y c Z  C 

a s  

i + j  i '+j"  

E (a, b, Ax, Bx) Z rj" Ec (c, d, C~, D~) 
t = 0  t '=O 

k + l  k ' + l "  

× ~ k, E. . (c ,d ,  Cy, Dy) E~ (a, b, Ay, By) ~ k'r 
u = O  u ' = 0  
m + n  m" +n" 

x ~, E~"(a,b, Az, Bz) ~ m'W E~, (c,d, C ,  Dz) 
v = O  v ' = 0  

x (tuv Ir{211t'u'v'), (12) 

where 

(tuv Jr l-zllt'u'v ') 

x Av(z,p, Pz)Av,(z, q, Qz)r~ 1 dr1 dr2, (13) 

and q and Q are defined analogously to p and ff but for the second charge 
distribution. Thus in practice we evaluate integrals over the Hermite function 
basis and combine those with the expansion coefficients to give integrals over 
primitive Gaussians. Some modifications to the form of Eq. (12) are desirable 
from the point of view of efficiency, as discussed by Saunders [9], but for 
schematic purposes we can use Eq. (12). The first step, evaluation of  the Hermite 
function integrals, is fast. The second step, which we can regard as a transforma- 
tion from the Hermite function basis to the Cartesian Gaussian basis, is 
relatively time-consuming and is certainly more expensive than calculating the 
Hermite function integrals. Finally, if required, we combine these integrals with 
basis set contraction coefficients to give the final integrals. In fact, some of the 
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expansion steps can be taken outside the contraction step, with a consequent 
improvement in efficiency. 

In a derivative integral we are interested in derivatives of f2 e : 0f2ij/OAx and 
Of 2 U/OBx for first derivatives, for example. Conventionally, we would differentiate 
the orbitals of Eq. (2) first and then expand the overlap distributions of the 
differentiated orbitals analogously to f2ej above. For example, for the derivative 
with respect to Ax we obtain: 

O~ij -- i+j+ 1 
0Ax ,=o~ F~JA,. (14) 

Note that the sum here is over more terms than appear in the undifferentiated 
charge distribution of Eq. (3) - higher orders of differentiation would increase 
this summation range further. The new coefficients F~ j are defined in terms of the 
coefficients E~ j above by: 

F~j = 2aE~ + 1,j _ iE~-1,/. (15) 

Analogous coefficients can be defined for higher orders of differentiation or for 
differentiation with respect to Bx. In this approach, then, we compute derivative 
integrals using the same general scheme of Eq. (12) as for undifferentiated 
integrals. Since the expansion of the differentiated charge distributions in Her- 
mite functions is longer than for the undifferentiated distributions, the work 
required to transform from the Hermite function basis to the Cartesian Gaussian 
basis is greater. Further, as the order of differentiation increases this extra work 
becomes larger and larger. Hence this approach is not well-suited to higher 
derivatives. 

Let us instead consider differentiation with respect to the variables P~ and 
Rx, for which: 

0 a 0 O 
- -  + - -  ( 1 6 )  

OAx - p  OP~ ORx 

and 

O b O O 
(17) 

OBx pOPx ORx" 
We recall that the Hermite functions are independent of Rx, while the expansion 
coefficients are independent of Px. Hence we can expect the expressions for the 
differentiated charge distributions to be simpler in terms of these variables, 
although we must eventually transform the derivatives back to the Ax, Bx 
representation. We obtain for the derivatives: 

and 

Of2i j i+j i OAt i ~  
- = g tA t+  ~ x  ,~=0 EU Oex t=0  ij 1 (18) 

~f2ij i+J ~3E~J 
~Rx - ~O ~ A'' 

Denoting OE~J/ORx by E~ j;1, we obtain the expansion relation: 

l,j;1 =__1 EiJ; 1 _ b  + + E~ + 219 t--I p(RxE~ j;1 E~ J) + (t .,=,+l~riJ" 1 

(19) 

(20) 

by differentiating Eq. (7) above. 
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We can make several important observations about these derivative formu- 
las. First, the combination of  expansion coefficients and Hermite functions in Eq. 
(18) above is over exactly the same range as the summation to give undifferenti- 
ated integrals: the only difference is that the degree of  the Hermite function has 
increased by one. Hence the code required to evaluate this term is the same as 
required in the undifferentiated case, and the number of operations is also the 
same. (It is easy to see that this holds true in any order of differentiation for this 
term.) As we saw above, this is not the case if we differentiate with respect to the 
variables Ax and Bx, because then a linear combination of different degree 
Hermite functions and expansion coefficients appears. 

Second, calculation of  the differentiated expansion coefficients E kt;1 requires 
essentially the same code again as for the undifferentiated case, with the obvious 
addition of an exta term in the expansion relation, and a starting value: 

EoOO;1 _ 2ab RxEOO, (21) 
P 

obtained by differentiating Eq. (9). As noted, the index range of the coefficients 
that are required is the same as that for the undifferentiated case, so the actual 
work required to combine Hermite function integrals and expansion coefficients 
does not increase. (The precomputation of the expansion coefficients themselves 
is of  course a very rapid step.) 

Third, in the usual scheme the index range of the program loops over the 
variables t, u, v depends on the direction of differentiation (i.e., differentiation 
with respect to Ax, Ay, etc). Thus these loops must be executed with different 
ranges for each of the three directions for first derivative integrals, for example. 
With our transformation of  variables, the loop index ranges become independent 
of  the direction of differentiation, so the program logic is simplified and the 
overheads are reduced. We may also note here that this approach in no way 
diminishes the possibilities for vectorizing the calculation of  the integral deriva- 
tives. Indeed, the simplifications to the program loop structure are likely to 
enhance these possibilities. 

Fourth, we can obtain an additional simplification as follows. Adding Eqs. 
(16) and (17) we obtain: 

OB~ - 3Px OAx" (22) 

Now, (in addition to saving one multiplication) this form of  the expression for 
the derivative with respect to B~ does not depend on the orbital exponents at all. 
Hence we can delay the transformation to the Bx derivative until later in the 
calculation, for example, until after the contraction step, so that the time 
required for this variable transformation becomes negligible. This is most 
important for first derivatives, as in any order of differentiation only one term 
can be treated this way. 

In the case of  higher derivatives there is a variety of  terms to be considered 
but the scheme remains essentially the same. For  example, the nth-order differen- 
tiated expansion coefficients with respect to Rx are obtained from the recursion 
formula: 

. b(RxE~/;.+nE~/;. 1) + (t  -]- =+_t+  1 = - - - 1~7 ij;" (23) E~+ 1,/;, E ~ l  P 
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with starting values: 

foo;n  + 1 __ 

and the identification: 

2ab oo, nEOO;,- l) (RxEo ' + (24) 
P 

E~ j;° = E~ j. (25) 

Higher derivatives of the Hermite functions with respect to Px of Eq. (19) are 
trivially obtained. We note further that if the two charge distributions that 
appear in an integral are differentiated separately, the total savings is the product 
of the individual reductions in work, since the two differentiations are indepen- 
dent. For multiple differentiation of the same charge distribution, we recall that 
by using our transformation of differentiation variables the summation range in 
the Hermite function to Cartesian Gaussian transformation is independent of the 
order of differentiation. Hence the savings increase as the order of differentiation 
increases, since in the conventional scheme the work required to accomplish this 
transformation increases substantially with the order of differentiation. In order 
to obtain an estimate of what savings are possible, we must also include an 
estimate of the effort required to transform back to the Ax, Bx representation. 
We shall now present operation counts showing that it is always preferable to 
use our transformation of differentiation variables. 

In order to simplify the counting we consider only floating-point operations 
(multiplication and addition), which are weighted equally. In addition, in our 
count we have not taken advantage of the possibility of deferring transformation 
of some derivatives until after contraction: in effect, we are counting operations 
only for primitive Gaussians and ignoring any additional savings that might 
accrue from moving manipulations outside the contraction step. If anything, 
neglecting this possibility favours the conventional approach to derivative inte- 
grals. 

We have listed operation counts for differentiation of SS, PP, and DD 
distributions in Table 1. We have not included the calculation of the Hermite 
function integrals, which is fast and contributes the same work to both cases, the 
conventional approach and our new scheme. Further, the transformation of the 
second charge distribution in the integral has also been excluded. We see that for 
the SS case the total operation count is not much affected by whether or not the 

Table 1. Operation counts for differentiation 

SS  PP  DD 

First derivatives 
Hermite/Cartesian transformation 12 396 4 032 
Px, R~ to Ax, Bx t ransformation 9 81 324 
Total 21 477 4 356 

Conventional 24 672 6 144 
Second derivatives 

Hermite/Cartesian transformation 42 1 386 14 112 
Px, Rx to Ax, B x t ransformation 93 837 3 328 
Total 135 2 223 17 460 

Conventional 150 3 678 30 912 



On the evaluation of derivatives of Gaussian integrals 183 

transformation of variables is performed. However, for higher angular momen- 
tum functions there is a decided advantage to using the transformation of  
variables, and this advantage is clearly growing with the order of  differentiation. 
As a further illustration of this, we note that for third derivatives of a PP 
distribution, for example, the conventional method would require 14 448 opera- 
tions, while using the transformation of  variables the work would be reduced to 
8 340 operations: a savings of 42%. 

Finally, some other aspects of  this scheme deserve comment. We note that: 

c~ b c~ a c~ 
ORx p OAx p OBx" (26) 

Therefore, the operation O/ORx is not the same as the differentiation O/OAx- 
O/OBx. But if A and B coincide then the differentiation with respect to Rx does 
not contribute to the energy derivative: only the differentiation with respect to P~ 
contributes. This simplification is already used in the ABACUS program [10]. 
We also note that the use of translational invariance to reduce the computational 
labour is not affected by our transformation of  variables: for first derivatives, for 
example, we have: 

dI dI 
dP~x + ~ x  = 0, (27) 

where I represents the two-electron integral in Eq. (11), from the use of  
translational invariance. 

3. Conclusions 

We have shown that by employing a transformation of differentiation variables, 
the work required to evaluate derivative integrals can be substantially reduced. 
The advantages of  our new approach increase both with the order of differenti- 
ation and with the angular momentum of the Gaussian functions involved. 
Savings will be obtained in the calculation of  energy derivatives for any wave 
function that is expanded in a Gaussian basis. In particular, the economies 
obtained by applying these methods to the calculation of third or higher 
derivative integrals will be substantial. 
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